Graphlet-based Characterization of Directed Networks
نویسندگان
چکیده
We are flooded with large-scale, dynamic, directed, networked data. Analyses requiring exact comparisons between networks are computationally intractable, so new methodologies are sought. To analyse directed networks, we extend graphlets (small induced sub-graphs) and their degrees to directed data. Using these directed graphlets, we generalise state-of-the-art network distance measures (RGF, GDDA and GCD) to directed networks and show their superiority for comparing directed networks. Also, we extend the canonical correlation analysis framework that enables uncovering the relationships between the wiring patterns around nodes in a directed network and their expert annotations. On directed World Trade Networks (WTNs), our methodology allows uncovering the core-broker-periphery structure of the WTN, predicting the economic attributes of a country, such as its gross domestic product, from its wiring patterns in the WTN for up-to ten years in the future. It does so by enabling us to track the dynamics of a country's positioning in the WTN over years. On directed metabolic networks, our framework yields insights into preservation of enzyme function from the network wiring patterns rather than from sequence data. Overall, our methodology enables advanced analyses of directed networked data from any area of science, allowing domain-specific interpretation of a directed network's topology.
منابع مشابه
Graphlet characteristics in directed networks
Graphlet analysis is part of network theory that does not depend on the choice of the network null model and can provide comprehensive description of the local network structure. Here, we propose a novel method for graphlet-based analysis of directed networks by computing first the signature vector for every vertex in the network and then the graphlet correlation matrix of the network. This ana...
متن کاملA Fast Sampling Method of Exploring Graphlet Degrees of Large Directed and Undirected Graphs
Exploring small connected and induced subgraph patterns (CIS patterns, or graphlets) has recently attracted considerable attention. Despite recent efforts on computing the number of instances a specific graphlet appears in a large graph (i.e., the total number of CISes isomorphic to the graphlet), little attention has been paid to characterizing a node’s graphlet degree, i.e., the number of CIS...
متن کاملA contribution to acceleration of graphlet counting
Graphlets are small non-isomorphic connected subgraphs used for different kinds of analyses in social networks, bioinformatics and other areas described by large networks, where their number can provide a characterization of the network properties. Much of existing methods for counting the graphlets are based on direct enumeration. However, in case of large networks, this type of counting becom...
متن کاملGraphlet-based measures are suitable for biological network comparison
MOTIVATION Large amounts of biological network data exist for many species. Analogous to sequence comparison, network comparison aims to provide biological insight. Graphlet-based methods are proving to be useful in this respect. Recently some doubt has arisen concerning the applicability of graphlet-based measures to low edge density networks-in particular that the methods are 'unstable'-and f...
متن کاملIdentification of Human Disease Genes from Interactome Network Using Graphlet Interaction
Identifying genes related to human diseases, such as cancer and cardiovascular disease, etc., is an important task in biomedical research because of its applications in disease diagnosis and treatment. Interactome networks, especially protein-protein interaction networks, had been used to disease genes identification based on the hypothesis that strong candidate genes tend to closely relate to ...
متن کامل